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Abstract 
 
Second order hold is a method that enables the discretization of input-driven nonlinear systems to be carried out with 

high precision. A new discretization scheme combining second order hold with the Taylor-series is proposed. The 
sampled-data representation and mathematical structure are explored. Both exact and approximate sampled-data repre-
sentations are described in detail. The performance of the proposed algorithm is evaluated for three different systems. 
Various sampling rates, delay times and truncation orders of the Taylor-series are considered to investigate the pro-
posed method. The results demonstrate that the proposed scheme is practical and easy to use for time-delay systems. 
Comparisons between the second, first and zero orders are given to show the advantages of the proposed method. 
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1. Introduction 

In many physical, industrial and engineering sys-
tems, delays occur due to the finite capabilities of 
information processing and data transmission among 
the various parts of the system. In all of these cases, 
the time-delay factors have counteracting effects on 
the system behavior and usually lead to poor perfor-
mance. Therefore, the subject of time-delay systems 
(TDS) has been investigated in the form of functional 
differential equations over the past three decades [1, 
2]. 

Control systems with time delays exhibit complex 
behaviors. It is therefore difficult to apply the control-
ler design techniques that have been developed during 
the last several decades to systems with any time 
delays in the variables. Thus, new design methods 
have been reported for time-delay control systems  

[3, 4].  
Most of the approaches proposed so far deal with 

linear time-delay control systems and, in particular, 
with the stability analysis and behavior of such sys-
tems with constant and/or uncertain time delays [5-
10]. Quite recently, nonlinear controllers were syste-
matically synthesized for multivariable nonlinear 
systems in the presence of sensor and actuator dead-
time [11]. 

The proposed discretization scheme is based on the 
Taylor series and uses a similar mathematical frame-
work, which was previously developed for delay-free 
nonlinear systems [12, 13]. However, it should be 
mentioned that conventional numerical techniques, 
such as the Euler and Runge-Kutta methods, have 
been employed in order to obtain a sampled-data 
representation of the original continuous-time delay-
free system [14, 15].  

All of these approaches require a “small” time step 
in order to improve the precision; however, this may 
not be the case in control applications where large 
sampling periods are inevitably introduced due to 
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physical and technical limitations [16-20].  
In large sampling period systems, the Taylor series 

method was used to improve the performance of the 
controller [14, 21]. However, in previous papers, the 
zero-order hold (ZOH) and first-order hold (FOH) 
assumptions were used in the discretization method. 
The performance of the assumption is highly depen-
dent on the input signal, and the sampling period 
should be short enough for the desired control preci-
sion. 

A high-order method is one that provides increased 
accuracy with only a modest increase in the computa-
tional cost [22-24]. The ZOH and FOH assumptions 
no longer assure good control performance when 
large sampling intervals are adopted. Therefore, the 
second-order hold (SOH) assumption is introduced in 
this paper to enhance the performance in situations 
where a large sampling interval is inevitable. 

In particular, the present study aims to develop a 
new method for the time discretization of SISO (sin-
gle input and single output) nonlinear input-driven 
dynamic systems with time delay, based on the Tay-
lor series and second-order hold assumption. This 
kind of discretization method inherits some of the 
system theoretic properties of the original continuous-
time system (such as its equilibrium and stability 
properties). More importantly, however, it is a finite 
dimensional representation, which allows the direct 
application of existing nonlinear control system de-
sign techniques. Second, the Taylor-SOH discretiza-
tion algorithm provides high precision under the sam-
pling period restriction, as is confirmed by several 
illustrative case studies. 

The paper is organized as follows: Section 2 
presents mathematical preliminaries and Section 3 
reviews recent techniques for the time discretization 
of delay-free nonlinear systems. Section 4 briefly 
presents the available time-discretization methods for 
linear time delay systems, and Section 5 includes the 
main results of this paper, in which the time-
discretization method for nonlinear systems with time 
delay is introduced. Finally, several illustrative cases 
are presented in Section 6 demonstrating the effec-
tiveness of the proposed discretization scheme. Sec-
tion 7 provides a few concluding remarks drawn from 
this study. 
 

2. Preliminaries  

In the present study single-input nonlinear conti-

nuous-time control systems are considered with a 
state-space representation of the form: 

 
( ) ( ( )) ( ( )) ( )dx t f x t g x t u t D

dt
= + −   (1) 

 
where nx X R∈ ⊂  is the vector of states and an 
open and connected set, u R∈ is the input variable 
and D is the system’s constant time-delay (dead-time) 
that directly affects the input. It is assumed that 

( )f x  and ( )g x  are real analytic vector fields 
on X . 

An equidistant grid on the time axis with mesh 
1 0k kT t t+= − > is considered, where 1[ , )k kt t + =  

[ ,( 1) )kT k T+ is the sampling interval, T is the sam-
pling period. It is also assumed that system (1) is dri-
ven by an input that is piecewise quadratic over the 
sampling interval, i.e., the second-order hold (SOH) 
assumption holds true. 

 
2.1 SOH for delay-free system 

For the SOH, while 0D = , and kT t kT T≤ < + , 
 

( ) [( 1) ]( ) ( ) ( )u kT u k Tu t u kT t KT
T

− −
= + −   

2
2

1 ( ) 2 [( 1) ] [( 2) ] ( )
2

u kT u k T u k T t kT
T

− − + −
+ −  (2) 

 
It can also be written as,  

 
( ) ( 1)( ) ( ) ( )u k u ku t u k t KT

T
− −

= + −   

2
2

1 ( ) 2 ( 1) ( 2) ( )
2

u k u k u k t kT
T

− − + −
+ − .  (3) 

 
Furthermore, let  

 
( ) ( 1)( ) u k u ks k

T
− −

= ,  (4) 

( ) ( 1)( ) s k s ka k
T
− −

=   (5) 

 
where, ( )s k represents the derivation at the instant kT , 
and ( )a k represents the second order derivation at 
the instant kT . Equation (3) can be abbreviated to, 
 

21( ) ( ) ( )( ) ( )( )
2

u t u k s k t kT a k t kT= + − + −   (6) 

 
This compact form will be used in the following 
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part of this paper. 
2.2 SOH for time-delay system 

The time-delay D can also be expressed as,  
 

( )D q T qTδ γ= + = +   (7) 
 

where, {0,1,2,...}q∈ , (0,1)δ ∈ and 0 Tγ< < . 
From (7), we can get  

 
Tγ δ= .  (8) 

 
Equivalently, the time-delay D is customarily 

represented as an integer multiple of the sampling 
period plus a time interval γ , such that γ is less than 
the sampling period [14, 15]. Based on the SOH as-
sumption and the above notation, expressions of the 
SOH can be derived for time-delay systems step by 
step. Because of the existence of γ , in the procedure 
of the deductive method, it should be divided into two 
time intervals within the given sampling period: 

 
1 [ , )kT kT γΙ = + ,  (9) 

2 [ , )kT kT TγΙ = + + .  (10) 
 
First, while 0q = , 0γ ≠ , 
 

1
( ) ( 1) ( 1)[ ( 1) ]t Iu t D u k s k t D k T

∈
− = − + − − − −   

 21 ( 1)[ ( 1) ]  
2

a k t D k T+ − − − − ,  (11) 

2
( ) ( ) ( )( )t Iu t D u k s k t D kT

∈
− = + − −  

21 ( )( )  
2

a k t D kT+ − − .  (12) 

 
Second, while 1q = , 0γ ≠ , 
 

1
( ) ( 2) ( 2)[ ( 2) ]t Iu t D u k s k t D k T

∈
− = − + − − − −

 
21 ( 2)[ ( 2) ]

2
a k t D k T+ − − − − ,  (13) 

2
( ) ( 1) ( 1)[ ( 1) ]t Iu t D u k s k t D k T

∈
− = − + − − − −

  
21 ( 1)[ ( 1) ]

2
a k t D k T+ − − − − .  (14) 

 
Therefore, the ordinary expression while 0q ≠  

and 0γ ≠  is obtained conveniently as follows:  
 

1
( )

( 1) ( 1)[ ( 1) ]
t Iu t D

u k q s k q t D k q T
∈

−

= − − + − − − − − −
 

21 ( 1)[ ( 1) ]
2

a k q t D k q T+ − − − − − − ,  (15) 

2
( )

( ) ( )[ ( ) ]
t Iu t D

u k q s k q t D k q T
∈

−

= − + − − − −
 

21 ( )[ ( ) ]
2

a k q t D k q T+ − − − − .  (16) 

 
Let,  
 

1( )
( 1) ( 1)[ ( 1) ]
t

u k q s k q t D k q T
Λ
= − − + − − − − − −

  

21 ( 1)[ ( 1) ]
2

a k q t D k q T+ − − − − − − ,  (17) 

2( )
( ) ( )[ ( ) ] 
t

u k q s k q t D k q T
Λ
= − + − − − −

  

21 ( )[ ( ) ]
2

a k q t D k q T+ − − − − .  (18) 

 
Therefore, (15) and (16) can be rewritten as follows: 
 

1 1

2 2

( );         t  
( )

( );           t .   
t I

u t D
t I

Λ ∈⎧
− = ⎨Λ ∈⎩

  (19) 

 
While 0q ≠ and 0γ = , which means that the time 
delay D is an exact integer multiple of the sampling 
period T. In this situation, while [ , )t kT kT T∈ + , the 
expression should be  

 
( ) ( ) ( )[ ( ) ]u t D u k q s k q t D k q T− = − + − − − −   

21 ( )[ ( ) ]
2

a k q t D k q T+ − − − − .  (20) 

 
Let,  

 
( ) ( ) ( )[ ( ) ]t u k q s k q t D k q TΛ = − + − − − −   

21 ( )[ ( ) ]
2

a k q t D k q T+ − − − − .  (21) 

 
So that (20) can be rewritten as, 

 
( ) ( )u t D t− = Λ .  (22) 

 
At this point, it would be methodologically appro-
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priate to succinctly review and delineate the time-
discretization method available for delay-free 
( 0D = ) nonlinear control systems that is based on 
the Taylor series and reported in [25]. The ensuing 
brief description of the Taylor discretization method 
for delay-free nonlinear systems will serve as a natu-
ral point of departure for the development of a similar 
in spirit discretization scheme that explicitly takes 
into account the presence of time-delay in the input 
variable ( 0D ≠ ).  
 

3. Time-discretization of delay-free nonlinear 
control systems 

Initially, delay-free ( 0D = ) nonlinear control sys-
tems are considered with a state-space representation 
of the form, 

 
( ) ( ( )) ( ( )) ( )dx t f x t g x t u t

dt
= + .  (23) 

 
Under the SOH assumption and within the sam-

pling interval, the solution of (23) is expanded in a 
uniformly convergent Taylor series [26], and the re-
sulting coefficients can be easily computed by taking 
successive partial derivatives of the right hand-side of 
(23): 

 

1

( 1) ( )
!

kt

T d xx k x k
dt

∞

=

+ = +∑
l l

l

l
l

 

[ ]

1

( ) ( ( ), ( ))
!

Tx k A x k u k
∞

=

= +∑
l

l

l
l

,  (24) 

 
where, ( )x k is the value of the state vector x at the 
instant kt t kT= = and [ ]( , )A x ul are determined 
recursively by: 
 

[1]( , ) ( ) ( ),A x u f x ug x= +   
[ ] [ ]

[ 1] ( , ) ( , )( , ) ( ( ) ( )) ,A x u A x uA x u f x ug x u
x u

+ ∂ ∂
= + +

∂ ∂

l l
l & (25

) 
 

where, 1,2,3...=l , u du dt=& . 
Therefore, an exact sampled-data representation 

(ESDR) of (23) can be derived by retaining the full 
infinite series of (9), 

 

( 1) ( ( ), ( ))Tx k x k u k+ = Φ   

[ ]

1

( ) ( ( ), ( ))
!

Tx k A x k u k
∞

=

= +∑
l

l

l
l

.  (26) 

Simultaneously, an approximate sampled-data re-
presentation (ASDR) of equation (23) is obtained by 
the truncation of the Taylor series of order N, 

 
( 1) ( ( ), ( ))N

Tx k x k u k+ = Φ   

[ ]

1

( ) ( ( ), ( ))
!

N Tx k A x k u k
=

= +∑
l

l

l
l

,  (27) 

 
where, the subscript T of the mapping N

TΦ denotes the 
dependence on the sampling period T, and the super-
script N denotes the finite series truncation order as-
sociated with the ASDR of equation (27). 
 

4. Time-discretization of linear control sys-
tems with time-delay 

It is now feasible to extend the aforementioned 
Taylor discretization method to nonlinear continuous-
time systems with a constant time-delay ( 0D ≠ ) in 
the input. In order to motivate the development of the 
proposed discretization procedure and draw the ap-
propriate analogies from the field of linear systems, 
let us first begin the exposition of the paper’s main 
results by briefly reviewing the ones available in the 
case of linear systems, 

 
( ) ( ) ( )dx t Ax t bu t D

dt
= + − ,  (28) 

 
where, A and b are constant matrices of appropriate 
dimensions. It is known that for any time inter-
val [ , )i fI t t= , the following formula holds true, 

 
( ) ( )( ) ( ) ( )

f
f i f

i

tA t t A t
f i

t
x t e x t e bu dτ τ τ− −= + ∫ .  (29) 

 
As shown in (16) to (19), under the SOH assump-

tion, the input variable expressions are different with-
in the two subintervals [ , )kT kT γ+ and 
[ , )kT kT Tγ+ + . By successively applying formula 
(29), we readily obtain, 
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( )
1

( )

( ) ( ) ,
kT

A A kT

kT

x kT

e x kT e b d
γ

γ γ τ

γ

τ τ
+

+ −

+

= + Λ∫
  (30) 

( ) ( )
2

( )

( ) ( ) ,
kT T

A T A kT T

kT

x kT T

e x kT e b dγ τ

γ
γ τ τ

+
− + −

+

+

= + + Λ∫
 (31) 

where 1( )τΛ and 2( )τΛ are defined by Eqs. (17) 
and (18), respectively.  

In light of Eq. (30), Eq. (31) yields,  
 

( ) ( )
2

( )

( ) ( )
kT T

A T A A kT T

kT

x kT T

e e x kT e b dγ γ τ

γ
τ τ

+
− + −

+

+

= + Λ∫
  

( ) ( )
1( )

kT
A T A kT

kT
e e b d

γ
γ γ τ τ τ

+
− + −+ Λ∫ .  (32) 

Let 'kT Tτ γ τ= − + + , then  

( ) ( )
1( )

kT
A T A kT

kT
e e b d

γ
γ γ τ τ τ

+
− + − Λ∫  

(2 ')
1(( 1) ') '

T
A T

T
e b k T dγ τ

γ
γ τ τ− −

−
= Λ − + +∫  

(2 )
1(( 1) )

T
A T

T
e b k T dγ τ

γ
γ τ τ− −

−
= Λ − + +∫ .  (33) 

Let 'kTτ γ τ= + + , then  

( )
2 ( )

kT T
A kT T

kT
e b dτ

γ
τ τ

+
+ −

+
Λ∫  

( ')
2

0
( ') '

T
A Te b kT d

γ
γ τ γ τ τ

−
− −= Λ + +∫  

( )
2

0
( )

T
A Te b kT d

γ
γ τ γ τ τ

−
− −= Λ + +∫ .  (34) 

 
Therefore, Eq. (32) can be rewritten as,  
 

( )x kT T+   

( )
2

0
( ) ( )

T
AT A Te x kT e bu kT d

γ
γ τ γ τ τ

−
− −= + + +∫  

(2 )
1(( 1) )

T
A T

T
e bu k T dγ τ

γ
γ τ τ− −

−
+ − + +∫   

0 1( )ATe x kT= + Γ + Γ ,  (35) 
 

where， 
 

( )
0 2

0
( ) ,

T
A Te b kT d

γ
γ τ γ τ τ

−
− −Γ = Λ + +∫   

(2 )
1 1(( 1) ) .

T
A T

T
e b k T dγ τ

γ
γ τ τ− −

−
Γ = Λ − + +∫   

 
Notice that the value of the state vector at 

( 1)k T+ is defined by the states evaluated at kT and 
the two subinterval expressions, which can be ob-
tained from the time-delay D and Eq. (19). 
 

5. Time-discretization of nonlinear control 
systems with time-delay 

Motivated by the linear approach described in sec-
tion 4, a similar line of thinking is adopted for the 
nonlinear case as well. Indeed, by applying the Taylor 
series discretization method for nonlinear systems 
presented above to the [ , )kT kT γ+ subinterval one 
immediately obtains the state vector evaluated at 
kT γ+ , 

 
1( ) ( ( ), ( ))x kT x kT kTγγ+ = Φ Λ ,  (36) 

 
where, the map γΦ can be derived through the direct 
application of formula (24), and the subsequent calcu-
lation of the corresponding Taylor coefficients can be 
realized through the recursive formulas (25). ( )x kT  
and 1( )kTΛ  are the instantaneous state vector and 
input value, respectively, at the instant kT . Further-
more, it can be derived from (17) that, 

 
1( ) ( 1) ( 1)( )kT u k q s k q T γΛ = − − + − − −   

21 ( 1)( )
2

a k q T γ+ − − − .  (37) 

 
Similarly, the Taylor discretization method applied 

to the [ , )kT kT Tγ+ + subinterval yields the state 
vector evaluated at ( 1)k T+ as a function of 

( )x kT γ+  and the input value at the instant kT γ+ , 
 

2( ) ( ( ), ( ))Tx kT T x kT kTγ γ γ−+ = Φ + Λ + ,  (38) 

and,  
 

2 ( ) ( )kT u k qγΛ + = − .  (39) 
 
Based on (26), the above Eqs. (36) and (38) can be 

rewritten as follows: 
 

[ ]
1

1

( ) ( ) ( ( ), ( ))
!

x kT x kT A x kT kT γγ
∞

=

+ = + Λ∑
l

l

l
l

, (40) 

( ) ( )x kT T x kT γ+ = +  
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[ ]
2

1

( )( ( ), ( ))
!

TA x kT kT γγ γ
∞

=

−
+ + Λ +∑

l
l

l
l

.  (41) 

 
Furthermore, according to (27), the approximate 

sampled-data representations (ASDRs) of Eqs. (40) 
and (41) are obtained from the truncation of the Tay-
lor series order of N, as shown below. 

 
1( ) ( ( ), ( ))Nx kT x kT kTγγ+ = Φ Λ   

[ ]
1

1

( ) ( ( ), ( ))
!

N

x kT A x kT kT γ

=

= + Λ∑
l

l

l
l

,  (42) 

( )x kT T+   

2( ( ), ( ))N
T x kT kTγ γ γ−= Φ + Λ +   

( )x kT γ= +   

[ ]
2

1

( )( ( ), ( ))
!

N TA x kT kT γγ γ
=

−
+ + Λ +∑

l
l

l
l

. (43) 

 
It should be emphasized that the functional repre-

sentation of the [ ]A l -coefficients of the map T γ−Φ re-
mains exactly the same subpart as that for the subin-
terval [ , )kT kT γ+ , and it is only necessary to reuse 
the same part with the aid of a symbolic software 
package such as MAPLE. 

For the consecutive subintervals, by combining Eqs. 
(36) and (38), the desired sampled-data representation 
of the original system (1) is obtained. 

 
( )x kT T+  

1 2( ( ), ( ), ( ))D
T x kT kT kT γ= Φ Λ Λ +   

1 2( ( ( ), ( )), ( ))T x kT kT kTγ γ γ−= Φ Φ Λ Λ + .  (44) 
 
Notice that a finite series truncation order N for the 

above series would naturally produce an ASDR: 
 

,
1 2( ) ( ( ), ( ), ( ))N D

Tx kT T x kT kT kT γ+ =Φ Λ Λ + . (45) 
 
It can also be written as  
 

,
1 2( 1) ( ( ), ( ), ( ))N D

Tx k x k k k δ+ = Φ Λ Λ + .  (46) 
 

Remark 1:  
In the linear case, it is quite straightforward to 

show that the above formula (45) naturally reproduc-
es result (35) as would be intuitively expected. There-
fore, formula (45) represents its nonlinear analogue. 
Remark 2: 

The special case where 0γ = and D qT= frequent-

ly occur in practice when modeling and designing 
digital control systems. In this case, one easily obtains  

 
( 1) ( ( ), ( ))D

Tx k x k k+ = Φ Λ   
( ( ), ( )) ( ( ), ( ))D

T Tx k u k q x k u k q= Φ − = Φ − ,  (47) 
as an ESDR, or 
 

,

( 1)

( ( ), ( )) ( ( ), ( )),N D N
T T

x k

x k u k q x k u k q

+

= Φ − = Φ −
 (48) 

 
as an ASDR of finite series truncation order N.  
 

6. Case studies 

The proposed time-discretization method for nonli-
near control systems with time-delay using the Taylor 
series and SOH assumption is evaluated by applying 
it to three typical systems: a simple first order process 
system, a simple analytic second order system, and a 
two degrees of freedom mechanical system.  

Different sampling periods and input delays were 
introduced in the simulation. At the same time, the 
MATLAB ODE solver was used to obtain the exact 
solutions in order to evaluate the proposed time-
discretization method. The values obtained by the 
proposed method were compared with the results 
given by MATLAB. The partial derivative terms 
involved in the Taylor series expansion were deter-
mined recursively by MAPLE.  

 
6.1 A process system  

Let us start from a simple first order system. A 
chemical process system is considered in the simula-
tion which is exactly the same as the system used in 
[14]. The system can be described as follows: 
 

2( ) ( ) (1 2 )dx f x g x u a x au ux ax
dt

= + = − + + − − . (49) 
 

In the simulation, a=0.3 is used. The initial system 
state was assumed to be (0) 0x = .  

Within the sampling interval, the solution of (49) is 
obtained by using a uniformly convergent Taylor 
series. According to the methodology described in the 
earlier sections, the sampled-data representation of 
the system is expressed as (42) and (43). 

In this system,  
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2( ) (1 2 ) ,f x a x ax= − + −   
( ) ( ).g x a x= −   (50) 

 
So that, the partial derivative terms [ ]( , )A x ul are 

determined recursively by (25).  
The following sine-wave input is applied to the 

system: 
 

( ) 0.8sin(1.6 )u t tπ= .  (51) 
 
Therefore, the time-delay input applied to the sys-

tem is as follows: 
 

( ) 0.8sin(1.6 ( ))u t D t Dπ− = − .  (52) 
 
Different sampling rates, time-delays and trunca-

tion orders of the Taylor-series are studied. Simulta-
neously, MATLAB 7.0 is used to calculate the accu-
rate value. Two different situations are shown as fol-
lows. 
Situation 1: 

When the truncation order N=3, sampling time 
T=0.09s, and time delay D=0.05s, the state response 
for the SOH is shown in Fig. 1.  

At the same time, the FOH and ZOH are used to 
provide a comparison with the SOH. Since MATLAB 
is used to calculate the exact values, a comparison of 
the response errors is shown in Fig. 2. It is obvious 
that the maximum error of 0.0104992 for the ZOH is 
decreased by 85.13% to 0.0015609 when the FOH is 
used, and that the maximum error of 0.0015609 for 
the FOH is decreased by 12.05% to 0.0013729 when 
the SOH is used. 
Situation 2: 

When the truncation order N=4, sampling time 
T=0.2s, and time delay D=0.09s, the state response 
for the SOH is shown in Fig. .  

At the same time, the FOH and ZOH are used to 
provide a comparison. A comparison of the response 
errors is shown in fig.4. It is obvious that the maxi-
mum error of 0.0204395 for the ZOH is decreased by 
58.15% to 0.008554 when using the FOH, and that 
the maximum error of 0.008554 for the FOH is de-
creased by 6.49% to 0.00799868 when using the 
SOH. 

 
6.2 A second order system 

In the previous section the proposed method was 
evaluated for a nonlinear first order system with input 

time-delay. In this section a simple second order sys-
tem is studied.  

The system is modeled as follows: 
 

2(1 ) 2 2x x x x u= − − +&& & .  (53) 

 
Fig. 1. State response (N=3). 

 

 
Fig. 2. Error comparison for situation 1. 

 

 
Fig. 3. State response (N=4). 
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Fig. 4. Errors comparison for situation 2. 
It is assumed that the initial conditions are (0) 0.1x = , 

(0) 0x =&  and the input is an acceleration input, 
 

1 / 5*( ) ^ 2u t D= − .  (54) 
 
The Taylor series discretization method requires a 

standard state-space representation form. The state 
variables of this system are defined as follows: 

 
1 2,      X x X x= = & .  (55) 

 
Therefore, the state space system model of (53) is 

as follows: 
 

1 1 1 2( ) ( )X f X g X u X= + =&   
2

2 2 2 2 1 1( ) ( ) (1 ) 2 2X f X g X u X X X u= + = − − +& . (56) 
 
According to (42) and (43), the sampled-data re-

presentation of system (56) is obtained as follows: 
 
 

 
Fig. 5. State response of the system (T=0.07s, D=0.035s). 

 

 
Fig. 6. Errors comparison (T=0.07s, D=0.035s). 
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Where, the partial derivative terms [ ]( , )A x ul  are 
determined, recursively, by (59) and (60), as follows: 
 

[1]
1 1 1( , ) ( ) ( )A X u f X ug X= +   
[ 1]
1

[ ] [ ] [ ]
1 1 1

1 2
1 2

( , )

( , ) ( , ) ( , ) ,

A X u

A X u A X u A x uf f u
X X u

+

∂ ∂ ∂
= + +

∂ ∂ ∂

l

l l l

&
 (59) 

 

 
Fig. 7. State response of the system (T=0.08s, D=0.03s). 
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Fig. 8. Error comparison (T=0.08s, D=0.03s). 
and 

 
[1]
2 2 2( , ) ( ) ( ),A X u f X ug X= +   
[ 1]
2

[ ] [ ] [ ]
2 2 2

1 2
1 2

( , )

( , ) ( , ) ( , ) .

A X u

A X u A X u A x uf f u
X X u

+

∂ ∂ ∂
= + +

∂ ∂ ∂

l

l l l

&
 (60) 

 
Figs. 5 to 8 present the simulation results which 

enable the evaluation of the accuracy of the Taylor 
discretization method in this system. These numerical 
experiments were performed for a fixed truncation 
order, various input delays and various sampling pe-
riods. Throughout this case study, the truncation order 
was set to 3N =  for all simulations. Various sam-
pling periods, T, 0.07 and 0.08, and several input 
time-delays, 0.035 and 0.03, are adopted in the simu-
lations of this second order system. 

Figs. 5 and 7 show a comparison between the 
results of the proposed Taylor-SOH method 
calculated by MAPLE and the MATLAB results. 
Figs. 6 and 8 show comparisons of the accuracy 
between the SOH and the FOH. From these figures, it 
can be seen that the sampling period significantly 
affects the accuracy of the proposed time-discre-
tization method, as would be intuitively expected. It is 
also true that the SOH is better than the FOH under 
the simulation conditions. 

 
6.3 A two degree-of-freedom mechanical system 

In this section, a two-degree of freedom (DOF) 
mechanical system, which is composed of a slider, 
spring, damping components and a pendulum, is stu-
died. A schematic of the system is shown in Fig. 9. 
The pendulum is hinged to a block mounted on a 

slider that is free to move on the guide. The motion of 
the slider is damped by springs, and the pendulum is 
damped by the rotational resistance in the hinge. The 

 

 
 
Fig. 9. Schematic diagram of pendulum system. 
governing nonlinear differential equations of this 
system are obtained by using mechanical kinetics 
theory: 
 

1 2 1 0

2
1 1 2

( ) (cos sin ) 2 ( )

( cos sin ) ( ) ,

m m x m l k x l

m l m m g U

θ µ θ θ

µ θ θ θ µ

+ + + + −

+ − − + =

&&&&

&   
  

2
1 1 1 0cos ( ) sin .cm l x I m l m gl Mθ θ θ θ+ + + = −&& &&&  (61) 

 
The state-space form of the system can be obtained 

from (61) by defining the state variables as follows: 
 

1 2 3 4, , ,X x X x X Xθ θ= = = = && .  (62) 
 

It gives 
 

1 2X X=& , 3 4X X=& .  (63) 
 

The resulting state-space equations are  
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              ,  (64) 

 
where, the parameters for this system are described in 
Table 1. 
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The initial states of the system are as follows: 
 

(0) 0.04, (0) 0, (0) 20 , (0) 0oX X θ θ= = = =&& .  (65) 
 

The sampled data representation of the 2-DOF 
mechanical system (64) is obtained by using the 
Taylor series discretization method: 
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[ ] [ ]
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l
, (66) 

 
Table 1. Parameters of the pendulum system. 
 

1 0.654m kg=  mass of slider 

100 /k N m=  spring coefficient 

0 0.025l m=  initial length of the spring 
20.0014cI kg m= ⋅  inertia about the center 

0.2µ =  coefficient of friction 

2 0.7925m kg=  mass of pendulum 

0.2l m=  length of the rod 
29.8 /g m s=  gravity 

2
0 0.2 deg/M kg m s= ⋅ ⋅  dry friction from the pendulum

 

 
Fig. 10. State response (N=1). 

 

 
Fig. 11. Error of SOH method (N=1). 

 
where i=1,2,3,4 and the partial derivative terms 

[ ] ( , )iA x u=l are determined recursively by (25). 
The input force acting on the system is assumed to 

be 19.5 0.5sin(4 ( ))U t Dπ= + − . Suppose that the 
sampling rate for the system is limited to 50Hz . In 
this case, the sampling period is not less than 0.02s. 
The input time-delay is =0.015D s . In such a situa-
tion, several simulations for different truncation or-
ders N from 1 to 3 were performed in MAPLE with 
the proposed Taylor-SOH method, as shown in Figs. 
10 to 15. Figs.10, 12 and 14 show the state responses 
for the different truncation orders, N. Figs.11, 13 and 
15 show the errors of the Taylor-SOH method for the 
different truncation orders, N. The state 1X  is the 
position of the slider, 2X  is the velocity of the slid-
er, 3X  is the angle of the pendulum from the refer-
ence and 4X  is the angular velocity of the pendulum. 

From these figures, it can be seen that the accuracy 
was greatly improved when N was increased from 1 
to 2. The accuracy was increased by choosing a big-
ger value of N. Table 2 shows the maximum error of 
every state variable for the different truncation orders. 
From this table, it can be observed that when N is 
increased from 3 to 4, no obvious improvement in the 
accuracy can be observed. Therefore, we should se-
lect an appropriate value of N under the limitations of 
the sampling time and the accuracy demanded. 

This example of a higher order system clearly 
shows that the proposed Taylor-SOH method is able 
to discretize a nonlinear system with input time-delay 
quite accurately. 
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Fig. 12. State response (N=2). 
 

 
 
Fig. 13 Error of SOH method (N=2). 
Table 2. Comparison of maximum errors for different trunca-
tion orders (T=0.02s, D=0.015s). 
 

State 
Max error of Taylor series-SOH assumption 

N=1 N=2 N=3 N=4 
X1 0.02110 0.001061 0.0000559 0.0000398
X2 0.31824 0.015593 0.0007465 0.0005809
X3 0.12019 0.005959 0.0002920 0.0002300
X4 1.75000 0.087588 0.0040231 0.0033427

 

  
Fig. 14. State response (N=3). 

 

  
Fig. 15. Error of SOH method (N=3). 
 

7. Conclusion 

A scheme based on the Taylor series combined 
with the second-order hold assumption is proposed 
for the derivation of a discrete-time representation of 
a nonlinear control system with time-delay. The ma-
thematical structure of the new discretization scheme 
is explored and characterized as useful for establish-
ing the concrete connections between the numerical 
and system-theoretic properties. The derived time-
discretization method provides a finite-dimensional 
representation for nonlinear control systems with 
time-delay, thereby enabling the application of exist-
ing nonlinear controller design techniques to such 
systems.  

The performance of the proposed time-discreti-
zation procedure is evaluated by using three case 
studies with increasing complexity: a first order 
process control system, a second order system and a 
two degree-of-freedom mechanical system. Various 
sampling rates and time-delay values are considered 
in the example studies. The simulation results are 
compared with those given by MATLAB, in order to 
verify the accuracy of the proposed method. These 
examples demonstrate how to use the proposed me-
thod to solve a real system. In these cases, even when 
the sampling period is large with input time-delay, the 
Taylor series combined with the SOH can satisfy the 
accuracy requirement of the systems. 

At the same time, some comparisons are made be-
tween the SOH with the FOH and ZOH methods 
when combined with the Taylor series in the discreti-
zation procedure. The results show that the SOH me-
thod is much better at retaining the high precision of 
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the input signals than the FOH and ZOH methods, in 
such cases as sinusoidal and acceleration inputs.  

Furthermore, general expressions for different or-
der hold discretization schemes will be the subject of 
a future publication. 
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